

X3T11/96-

X3T11/Project 1231-D/REV 1.1

HIGH-PERFORMANCE PARALLEL INTERFACE -

6400 Mbit/s Physical Switch Control

(HIPPI-6400-SC)

May 1, 1997

Secretariat:

Information Technology Industry Council (ITI)

ABSTRACT: HIPPI-6400-SC provides a protocol for controlling physical layer switches which are based
on the High-Performance Parallel Interface at 6400 Mbits/s (HIPPI-6400-PH), a simple high-performance
point-to-point interface for transmitting digital data at peak data rates of 6400 Mbit/s between data-process-
ing equipment.

NOTE:

This is an internal working document of X3T11, a Technical Committee of Accredited Standards Commit-
tee X3. As such, this is not a completed standard. The contents are actively being modified by X3T11. This
document is made available for review and comment only. For current information on the status of this doc-
ument contact the individuals shown below:

POINTS OF CONTACT:

Roger Cummings (X3T11 Chairman) Ed Grivna (X3T11 Vice-Chairman)
Distributed Processing Technology Cypress Semiconductor
140 Candace Drive 2401 East 86th Street
Maitland, Fl 32751 Bloomington, MN 55425
 (407) 830-5522 x348, Fax:(407) 260-5366 (612) 851-5200, Fax: (612) 851-5087
 E-mail: cummings_roger@dpt.com E-mail: elg@cypress.com

Roger Ronald (HIPPI-6400-SC Technical Editor)
E-Systems
MS 35300 HD
PO Box 660023
Dallas, TX 75266-0023
 (214) 205-8043, Fax: (214) 272-8144
 E-mail: rronald@esy.com

Comments on Rev 0.20
This is a preliminary document. The first draft (rev 0.01) was presented and reviewed for the first time in
March 1996. The second revision (rev .10) was reviewed on May 9th and 10th in Dallas. This revision cor-
rects errors discovered at that time and continues the process of documentation.

Rev bars are now included in this revision of the document except for cases of minor punctuation or spell-
ing error correction.

Major changes from the previous revision include:

• new definitions added for alternate pathing, final destination and original source

• changing the requirements for selection of the switch port to allow alternate pathing

• beefing up the paragraph on error checking required in fabric

• adding information on micropacket interleaving

• clarifying the paragraph on congestion management

• adding reserved addresses from the HIPPI-800-SC standard

• adding more information on routing to the informative appendix

In addition to discussing these changes, it is expected that the next meeting (Santa Fe, June 10-11) will
cover usage of administrative packets.

Comments on Rev 0.30
This revision was started to collect changes and additions made during and after the June ANSI meeting
held in Santa Fe, NM on June 10th thru the 12th.

Major changes from the previous revision include:

• Added definitions

• General clean-up

• Pruning of sections detailing alternative addressing approaches (alternate pathing, broadcast, and mul-
ticast)

• Moved congestion management paragraph to reside within the general section on error protection

• Removed requirement of 4 micropacket message support for in-band communications

• Split switching, bridging, and routing into three appendices while adding text and examples

Comments on Rev 0.40
This revision was started to collect changes and additions made during and after the July HIPPI-6400
working group meeting held in San Jose on July 11th and 12th.

Major changes from the previous revision include:

• Definitions added for administrator, fabric, log, and switch

• Switch addressing references to optional modes reduced to a minimum

• Address restrictions for inter-operation with HIPPI-800 removed from section 6

• Removed e-mail list instructions from this page for obsolete mail groups
ii

Comments on Rev 0.45
This revision was started to collect changes and additions made during and after the August HIPPI-6400
ANSI meeting held in Honolulu on August 5-7, 1996. Because the document has not been reviewed line-
by-line since the July working group meeting, change bars still include the revision 0.4 changes.

Major changes from the previous revision include:

• Updated definitions and acronyms to follow the lead of HIPPI-6400-PH

• Removal of comments that this specification would describe switch-to-switch negotiation of address
configuration.

• Information and procedures for using admin micropackets for topology discovery.

• Information and procedures for using admin micropackets for logical address assignment.

• Replacement of 16 bit logical addresses with 48 bit Universal LAN Addresses (ULAs) and provision for
optional operation using 16 of the 48 bits.

• Removed requirement to support 64K switch addresses.

• Changed the limit for the maximum count of micropackets that may be sent on a single VC before inter-
leaving traffic from other VCs from 65 to 66 (to match the limit for a VC0 message).

• Updated text to reflect decision that all micropackets except Header micropackets (not just Data micro-
packets) will be treated as part of a message following a Header micropacket.

Comments on Rev 0.50
This revision was started to collect changes and additions made during and after the September and Octo-
ber HIPPI-6400 ANSI meetings. Because the document has not been reviewed line-by-line since the July
working group meeting, change bars still include the revision 0.4 changes.

There are no major changes from the previous revision.

Comments on Rev 0.60
This revision was started to collect changes and additions made during and after the November HIPPI-
6400 working group meeting held in Phoenix on November 6th and 7th.

Major changes from the previous revision include:

• Inclusion of the Admin Micropacket Draft, revision 0.4. This inclusion does not add change bars as that
draft had been reviewed by the group.

• Changed admin command and response names to include an underline between multiple words. This
change does NOT have change bars.

• Added many “shalls” to the admin micropacket command and response table.

• Added a diagram showing address processing

Plus, this version continued to clean up document editorial comments
iii

Comments on Rev 0.70
This revision was started to collect changes and additions made during and after the December HIPPI-
6400 meeting held in Minneapolis on December 2nd and 3rd.

Major changes from the previous revision include:

• Changing the undefined admin micropacket Function codes to reserved.

• Providing a admin micropacket command/response for endpoints to learn connected addresses in sup-
port of broadcast capability (ULA_LIST_REQUEST and ULA_LIST_RESPONSE).

• Changed the name of the RETURN_LOGICAL_ADDRESS and LOGICAL_ADDRESS_RESPONSE to
ULA_REQUEST and ULA_RESPONSE.

• Moved the text on admin micropacket commands and status out of the overly large table.

• Deleted Annex C on routing (no useful information was included in that section).

Comments on Rev 0.80
This revision was started to collect changes and additions made during and after the January HIPPI-6400
meeting held in Phoenix on January 7th, 8th and 9th.

Major changes from the previous revision include:

• The rules for address matching of administrative micropackets in section 7.6 and Figure 5 were modi-
fied to prevent an element with an address of x’FFFFFFFF’ from taking and processing all micropackets
sent using hop-count addressing.

• Change section 8 title from “Address Configuration” to “ULA Configuration”

• Added a bibliography as Annex C

Comments on Rev 0.90
This revision was started to collect changes and additions made during and after the February HIPPI-6400
meeting held in San Jose.

Major changes from the previous revision include:

• Capitalized “Admin” (no change bars added)

• The document was scrubbed to eliminate use of the word “address” by itself. All occurrences were
changed to be “element addresses” or ULAs.

For broadcast functionality, the following was added:

• The EXCHANGE_TYPE and TYPE_RESPONSE now have two bits to indicate whether a endpoint
desires to receive broadcast messages and whether the endpoint is willing to be a broadcast server.
EXCHANGE_TYPE is now required to be sent at one second intervals for endpoints who want broad-
casts and/or are willing to be servers. This serves as a ping function to allow updating of who the broad-
cast server is and who should receive broadcasts.

• Specified that the first ULA registered on a port using the ULA_REQUEST/ULA_RESPONSE is the
destination ULA that will be used for broadcast messages.
iv

• The ULA_RESPONSE now contains a broadcast address that may be used by hosts.

• Made clear that exactly one ULA is returned for each port in the ULA_LIST_RESPONSE.

• Added that switches must do type discovery and ULA exchange.

• Changed 8.2.2 to describe switch to switch ULA operations.

• Added clause 9 to describe how broadcast works.

Comments on Rev 1.0
This revision was started to collect changes and additions made during and after the March HIPPI-6400
working group meeting held in San Jose. Change bars were left in place for the portions of this document
that deal with broadcast, since a thorough review was not completed.

Major changes from the previous revision include:

• Change definitions for Admin micropacket, Element, Element address, and ULA.

• Added the acronym for LAN.

• Made use of IEEE compliant ULAs mandatory in the ULA exchange operations.

• Added the PORT_MAP_REQUEST and PORT_MAP_RESPONSE operations

• Added the PORT_REMAP and PORT_REMAP_RESPONSE operations.

• Split the description of broadcast into two sections; one for general broadcast functions and another for
broadcast emulation done with a broadcast server.

• Removed requirement that hosts must repeat broadcast registration to continue to receive broadcasts.

Comments on Rev 1.1
This revision was started to collect changes and additions made during and after the April HIPPI-6400
meeting held in Palm Springs. Special thanks to Tom Gilbert and Fred Templin for their comments this
month.

Major changes from the previous revision include:

• Added a scope and introduction bullet for broadcast.

• Added overview text in the switch function section (paragraph 4) for Admin micropackets and for broad-
cast.

• Added definitions for endpoint and link-end.

• Capitalized “message” all over the place (not marked with change bars).

• Changed the Admin micropacket format of EXCHANGE_ELEMENT_FUNCTION and
ELEMENT_FUNCTION_RESPONSE. The Element function value is now in byte (15), NOT byte 0).

• Added a parameter to the Admin micropacket ERROR_RESPONSE. The Admin Command value that
precipitated this response is now returned in byte (15).

• Shrunk the field used to specify the physical switch port in Admin micropackets (broadcast function)
from 4 bytes to 2 bytes.

• Improved wording consistency in the” mandatory” field Admin micropacket command table.
v

• Allowed vendor unique Admin commands in the range from x’80’ to x’FF’.

• Removed the sentence that kept switches from acting as broadcast servers for other switches.

• Added text on Admin Element address processing for a single ported device.

• Clarified that a response to RESET is not done normally, but is done in the error case.

• Dropped the second part of section 8.2.1. This sub-paragraph said that unidentified Elements should be
treated as endpoints. It did not make a lot of sense to specify this, since such an endpoint would not
have a ULA.

• Noted that the value x’0’ is not a valid port number (ports number from 1 thru n) and that x’0’ is used to
denote an invalid port mapping.

• Reworded references about spanning tree and 802.1d to be consistent.

• Added paragraph 9.3 on spanning tree.

Please help us in this development process by sending comments, corrections, and suggestions to the
Technical Editor, Roger Ronald @ E-Systems via e-mail (rronald@esy.com).
vi

Table Of Contents
1 Scope . 1

2 Normative references . 1

3 Definitions and conventions . 1
3.1 Definitions . 1
3.2 Editorial conventions . 2

3.2.1 Binary notation . 2
3.2.2 Hexadecimal notation . 2
3.2.3 Bit/Byte naming conventions 3
3.2.4 Acronyms and other abbreviations 3

4 System overview . 3
4.1 Switch function . 3
4.2 Micropacket . 3
4.3 Message. 4
4.4 Admin micropackets . 4
4.5 Broadcast . 4

5 Switch routing . 4
5.1 Micropacket data transferred through fabric. 4
5.2 Routing of Header micropacket . 4

5.2.1 Switch addressing . 5
5.3 Routing of subsequent micropackets in a Message. 5
5.4 Error protection . 5

5.4.1 Mandatory error checking . 5
5.4.2 Optional error checking . 5
5.4.3 Congestion management . 5

5.5 Data interleaving . 5
5.5.1 Micropacket interleaving . 6
5.5.2 Message interleaving . 6

6 ULA restrictions and reserved ULAs . 7

7 Admin micropackets . 8
7.1 Elements . 8
7.2 Admin micropacket functions . 8
7.3 Admin micropacket format . 9
7.4 Admin micropacket functions . 11

7.4.1 PING . 11
7.4.2 PING RESPONSE . 11
7.4.3 SET_ELEMENT_ADDRESS. 11
7.4.4 SET_ELEMENT_ADDRESS_RESPONSE. 11
7.4.5 RESET . 13
7.4.6 EXCHANGE_ELEMENT_FUNCTION 13
7.4.7 ELEMENT_FUNCTION_RESPONSE. 13
7.4.8 ULA_REQUEST . 14
7.4.9 ULA_RESPONSE . 14
7.4.10 READ_REGISTER . 14
7.4.11 READ_REGISTER_RESPONSE 14
7.4.12 WRITE_REGISTER . 14
7.4.13 WRITE_REGISTER_RESPONSE 15
vii

viii
7.4.14 ERROR_RESPONSE . 15
7.4.15 ULA_LIST_REQUEST . 15
7.4.16 ULA_LIST_RESPONSE . 15
7.4.17 PORT_REMAP . 16
7.4.18 REMAP_RESPONSE . 16
7.4.19 PORT_MAP_REQUEST . 16
7.4.20 PORT_MAP_RESPONSE. 16
7.4.21 Reserved Admin micropacket functions 16

7.5 Addressing of Admin micropackets 16
7.6 Admin Element address assignment 17
7.7 Admin micropacket flow control . 18

8 ULA Configuration . 18
8.1 Determination of Topology . 18
8.2 ULA exchange . 19

8.2.1 Endpoints on both ends . 19
8.2.2 Switches on both ends . 20
8.2.3 Endpoint to switch . 20

9 Broadcast. 20
9.1 Broadcast Operation . 20
9.2 Registration for broadcast . 20
9.3 Spanning Tree Operation . 20

10 Broadcast Emulation . 21
10.1 Supported broadcast ULAs . 21
10.2 Selection of broadcast server. 21
10.3 Broadcast Server Configuration . 21
10.4 Sending Broadcast Messages . 22

A Switching . 23
A.1 General . 23
A.2 Logical addressing . 23
A.3 Input specific logical addressing . 24

B Bridging . 25
B.1 General . 25

C Bibliography . 26

 ix

Figure 1 - Message format .. 4
Figure 2 - Header micropacket addressing.. 5
Figure 3 - HIPPI-6400 Switch .. 6
Figure 4 - Potential HIPPI-6400 Elements... 8
Figure 5 - Admin Micropacket Byte Format ... 9
Figure 6 - Admin micropacket addressing ... 10
Figure 7 - Endpoint to endpoint connect.. 19
Figure 8 - Hosts and switch configuration.. 23
Figure 9 - Hosts, switch, and bridge configuration..................................... 25

Figures

x

Table 1 - Data carried through fabric.. 3
Table 2 - Data to route 1st micropacket in a Message 4
Table 3 - Data to Route Subsequent Micropackets in a Message 4
Table 4 - Data used for error checking and reporting................................. 4
Table 5 - Reserved ULAs ... 7
Table 6 - Admin Micropacket Format ... 10
Table 7 - Status Flags .. 11
Table 8 - Admin Commands... 12
Table 9 - Supported broadcast ULAs... 21
Table 10 - Port look-up table .. 24

Tables

Foreword (This Foreword is not part of American National Standard X3.xxx-199x.)

This American National Standard specifies the behavior and control for HIPPI-6400
physical layer switches. HIPPI-6400 is an efficient high-performance point-to-point
interface. HIPPI-6400 physical layer switches may be used to give the equivalent of
multi-drop capability, connecting together multiple data processing equipments.

This standard provides an upward growth path for legacy HIPPI-based systems.

This document includes annexes which are informative and are not considered part of
the standard.

Requests for interpretation, suggestions for improvement or addenda, or defect
reports are welcome. They should be sent to the X3 Secretariat, Information Technol-
ogy Industry Council, 1250 Eye Street, NW, Suite 200, Washington, DC 20005.

This standard was processed and approved for submittal to ANSI by Accredited Stan-
dards Committee on Information Processing Systems, X3. Committee approval of the
standard does not necessarily imply that all committee members voted for approval.
At the time it approved this standard, the X3 Committee had the following members:

(List of X3 Committee members to be included in the published standard by
the ANSI Editor.)

Subcommittee X3T11 on Device Level Interfaces, which developed this standard, had
the following participants:

(List of X3T11 Committee members, and other active participants, at the time
the document is forwarded for public review, will be included by the Technical
Editor.)
xi

Introduction

This 6400 Mbits/second High-Performance Parallel Interface, Physical Switch Control
(HIPPI-6400-SC) standard defines the control for HIPPI-6400 physical layer switches.
HIPPI-6400 is an efficient high-performance point-to-point interface. Small fixed-size
micropackets provide an efficient, low-latency, structure for small messages, and a
building block for large messages. HIPPI-6400 physical layer switches may be used to
give the equivalent of multi-drop capability, connecting together multiple data process-
ing equipments.

Characteristics of this HIPPI-6400 physical switch control protocol include:

• Support for 48 bit Universal LAN Addresses (ULAs)

• Support for restricted mode operation with a 16 bit subset of the ULA

• Procedures for use of Admin micropackets to automate ULA assignment

• Ability to span multiple physical layer switches within a fabric

• Support for physical layer switches with differing numbers of ports, all within the
same fabric

• Specified reserved ULAs to aid address self-discovery, switch management, and
switch control

• Support for 4 Virtual Channels

• Broadcast capabilities with loop avoidance, using the IEEE 802.1d Spanning Tree
Algorithm and Protocol, either within a switch or provided by an attached server
xii

American National Standard

for Information Technology –

High-Performance Parallel Interface –

6400 Mbit/s Physical Switch Control (HIPPI-6400-SC)

1 Scope

This American National Standard provides switch
control for physical layer switches using the 6400
Mbits/second High-Performance Parallel Interface
(HIPPI-6400), a high-performance point-to-point
interface between data-processing equipment.

The purpose of this standard is to facilitate the
development and use of the HIPPI-6400 in com-
puter systems by providing common physical
switch control. The standard provides switch con-
trol structures for physical layer switches intercon-
necting computers, high-performance display
systems, and high-performance, intelligent block-
transfer peripherals. This standard also applies to
point-to-point HIPPI-6400 topologies.

Specifications are included for:

- Interleaving of Virtual Channels (VCs) within
a physical channel

- Selection of Messages for transmission on
physical channels

- Self discovery of configuration information

- Broadcast capability with loop avoidance
using the IEEE 802.1d Spanning Tree Algorithm
and Protocol

2 Normative references

The following American National Standard con-
tains provisions which, through reference in this
text, constitute provisions of this American National
Standard. At the time of publication, the edition
indicated was valid. All standards are subject to
revision, and parties to agreements based on this

standard are encouraged to investigate the possi-
bility of applying the most recent edition of the
standard listed below.

ANSI X3.183-1991, High-Performance Parallel
Interface – Mechanical, Electrical, and Signalling
Protocol Specification (HIPPI-PH).

ANSI X3.210-1992, High-Performance Parallel
interface, Framing Protocol (HIPPI-FP).

ANSI X3.222-1993, High-Performance Parallel
interface, Physical Switch Control (HIPPI-SC).

ANSI X3.xxx-199x, High Performance Parallel
Interface 6400 Mbits/s, Physical Layer (HIPPI-
6400-PH)

3 Definitions and conventions

3.1 Definitions

For the purposes of this standard, the following
definitions apply.

3.1.1 Admin micropacket: A HIPPI-6400 micro-
packet used for configuration and management.

3.1.2 administrator: A station management entity
providing external management control.

3.1.3 alternate pathing: Capability to address a
Message to select from a group of ports based upon
defined criteria.

3.1.4 broadcast: The capability for a Source to
send one Message that arrives at multiple Destina-
tions.

3.1.5 Destination: The equipment that receives the
data.

3.1.6 Device: Any system level component (e.g.
1

endpoint or switch) with a HIPPI-6400 port.

3.1.7 Element: Any component of a HIPPI-6400
system that is able to receive and send Admin mi-
cropackets conforming to this standard.

3.1.8 endpoint: A device that is capable of acting
as a Final Destination and/or an Originating Source.

3.1.9 Admin Element address: A 32-bit field
uniquely identifying an Element.

3.1.10 fabric: All of the switching equipment con-
nected together in a configuration.

3.1.11 Final Destination: The end device that re-
ceives, and operates on, the payload portion of the
micropackets. This is typically a host computer sys-
tem, but may also be a translator, bridge, or router.

3.1.12 HIPPI-PH: High-Performance Parallel Inter-
face - Mechanical, Electrical, and Signalling Proto-
col Specification (HIPPI-PH), ANSI X3.183-1991.
Data is transmitted in parallel over copper twisted-
pair cables at 800 or 1600 Mbits per second.

3.1.13 HIPPI port: A HIPPI-6400-PH, or HIPPI-PH,
Source or Destination.

3.1.14 in-band: Switch control communications ac-
complished over a HIPPI-6400 link. As opposed to
out-of-band (using an alternative communication
channel).

3.1.15 link: A full-duplex connection between HIP-
PI-6400-PH Devices.

3.1.16 link-end: A hardware device that terminates
one end of a link.

3.1.17 log: The act of making a record of an event
for later use.

3.1.18 micropacket: The basic transfer unit con-
sisting of 32 data bytes and 64 bits of control infor-
mation.

3.1.19 Message: An ordered sequence of one or
more micropackets which have the same VC. The
first micropacket is a Header micropacket. The last
micropacket, which may also be the first micropack-
et, has the TAIL bit set.

3.1.20 optional: Characteristics that are not re-
quired by HIPPI-6400-SC. However, if any optional
characteristic is implemented, it shall be implement-
ed as defined in HIPPI-6400-SC.

3.1.21 Originating Source: The end device that
generates the payload portion of the micropackets.
This is typically a host computer system, but may

also be a translator, bridge, or router.

3.1.22 Source: The equipment that transmits the
data.

3.1.23 switch: An equipment that provides connec-
tions between HIPPI-6400 links based on this stan-
dard.

3.1.24 Universal LAN MAC Address (ULA): A log-
ical address stored in a Source or Destination field
that uniquely identifies an Originating Source or Fi-
nal Destination. The ULA conforms to the 48-bit
MAC address specified by the IEEE 802 Overview
Standard.

3.1.25 Virtual Channel (VC): One of four logical
paths within each direction of a link.

3.2 Editorial conventions

In this standard, certain terms that are proper
names of signals or similar terms are printed in
uppercase to avoid possible confusion with other
uses of the same words (e.g., FRAME). Any lower-
case uses of these words have the normal techni-
cal English meaning.

A number of conditions, sequence parameters,
events, states, or similar terms are printed with the
first letter of each word in uppercase and the rest
lowercase (e.g., State, Source). Any lowercase
uses of these words have the normal technical
English meaning.

The word shall when used in this American
National standard, states a mandatory rule or
requirement. The word should when used in this
standard, states a recommendation.

3.2.1 Binary notation

Binary notation is used to represent relatively short
fields. For example a two-bit field containing a
binary value of 10 is shown in binary format as
b'10'.

3.2.2 Hexadecimal notation

Hexadecimal notation is used to represent some
fields. For example a two-byte field containing a
binary value of b’1100010000000011’ is shown in
hexadecimal format as x'C403'.
2

3.2.3 Bit/Byte naming conventions

As specified in HIPPI-6400-PH:

- In a parameter that uses multiple bytes, the
most-significant byte is the lowest-numbered
byte

- In a parameter that uses multiple bits, the
most-significant bit is the highest-numbered bit

3.2.4 Acronyms and other abbreviations
ACK acknowledge indication
ARP Address Resolution Protocol
CR credit amount parameter
CRC cyclic redundancy check
ECRC end-to-end CRC
HIPPI High-Performance Parallel Interface
IP Internet Protocol
LAN local area network
LCRC link CRC
MAC media access control
ns nanoseconds
RIP Routing Information Protocol
RSEQ receive sequence number
TSEQ transmit sequence number
ULA universal LAN address
VC virtual channel
VCR virtual channel credit selector
µs microseconds

4 System overview

This paragraph provides an overview of the struc-
ture, concepts, and mechanisms used in HIPPI-
6400-SC.

4.1 Switch function

HIPPI-6400 switches provide a method to send
Messages from a Source port to a Destination port.
Each Message travels on one of the four Virtual
Channels (VCs) available in HIPPI-6400-PH (see
HIPPI-6400-PH for assignments of Message type
to VC). All of the micropackets of a Message are
transmitted on a single VC, i.e., the VC number
does not change as the micropackets travel from
the Originating Source to the Final Destination over
one or more links.

Different VCs are interleaved on the physical chan-
nel allowing up to four Messages to proceed to a
Destination or from a Source at any given time.

During transfer of a Message, the VC in use is busy
and is unavailable for use by other Messages
involving the same Source or Destination ports.

4.2 Micropacket

Micropackets are the basic transfer unit for HIPPI-
6400. As described in HIPPI-6400-PH, a micro-
packet is composed of 32 data bytes and 64 bits of
control information.

The 64 bits of control information in each micro-
packet includes parameters for physical (PH) layer
functions and for switch control (SC) functions.
These functions include:

- selecting a VC

- detecting missing micropackets

- denoting the types of information in the
micropacket

- marking the last micropacket of a Message

- signalling that the Message was truncated at
its originator, or damaged en-route, and should
be discarded

Table 1 describes the information that the switch
fabric carries from a HIPPI-6400-PH source to a
HIPPI-6400-PH destination. Table 2 and table 3
describe the information that a switch fabric uses to
determine micropacket routing.

Table 1 - Data carried through fabric

Description Size

ERROR 1 Bit

TAIL 1 Bit

VC 2 Bits

TYPE 4 Bits

ECRC 16 Bits

Payload Data 32 Bytes
3

Table 4 contains information that can be used to
determine whether the micropacket contains errors
and a means to report discovered errors.

 Note that there is information used by the switch
fabric that also is carried through it.

4.3 Message

As shown in figure 1, Messages are logical groups
of micropackets which have the same VC. The first
micropacket of a Message, i.e., the Header micro-
packet, contains information used to route through
a HIPPI-6400 fabric (see figure 2) as well as other
information as specified in HIPPI-6400-PH. The
last micropacket of the Message is marked with the
TAIL bit.

4.4 Admin micropackets

HIPPI-6400-PH specifies a micropacket with Type
= Admin. HIPPI-6400 switches use Admin micro-
packets for configuration discovery, address
assignment, and broadcast configuration.

4.5 Broadcast

HIPPI-6400 switches provide a method for the
broadcast of Messages either directly or through
an external broadcast server. Broadcast Messages
are propagated along a loop-free spanning tree of
the interconnected HIPPI-6400 switches con-
structed by the IEEE 802.1d Spanning Tree Algo-
rithm and Protocol.

5 Switch routing

5.1 Micropacket data transferred through fabric

A HIPPI-6400 switch shall pass the information
shown in table 1 through the fabric. Micropacket
data payload, the TAIL bit, the TYPE field, the VC
field, and the ECRC shall not be modified while
passing through a switch fabric. The ERROR bit
shall be transferred as set if it was received as set.
If the ERROR bit is received as not set, the bit may
be set to indicate a switch detected error as
described in 5.4.

5.2 Routing of Header micropacket

Figure 2 shows part of the Header micropacket.
The complete specification is provided in HIPPI-
6400-PH.

Within the Header micropacket, the Destination
ULA specifies the Final Destination where a Mes-
sage is to be sent.

The micropacket TYPE field (TYPE = x’9’) identi-
fies a micropacket as a Header micropacket.

Table 2 - Data to route 1st micropacket in a
Message

Description Size

TAIL 1 Bit

VC 2 Bits

TYPE 4 Bits

Payload Data 32 Bytes

Table 3 - Data to Route Subsequent
Micropackets in a Message

Description Size

TAIL 1 Bit

VC 2 Bits

TYPE 4 Bits

Table 4 - Data used for error checking and
reporting

Description Size

ERROR 1 Bit

TYPE 4 Bits

ECRC 16 Bits

Payload Data 32 Bytes

1

2

3

n

Header micropacket

1st 32 bytes of user data

2nd 32 bytes of user data

Last bytes of user data

M
ic

ro
pa

ck
et

Tr

an
sm

is
si

on
 o

rd
er

Figure 1 - Message format
4

TAIL = 1 on a Header micropacket indicates that
there are no other micropackets for this Message.

The micropacket VC field specifies one of four Vir-
tual Channels that this micropacket will use to
traverse the switch fabric (micropackets traverse a
fabric on a single VC and never cross VCs).

Switches shall support independent ULA mapping
for each input port. This permits mapping the same
ULA value to different output ports based upon
which input port received the micropacket. See
Annex A for an explanation of input port specific
switching functionality.

5.2.1 Switch addressing

Switches shall support a mode of operation that
provides in-order delivery of all micropackets on a
VC from an Originating Source to a Final Destina-
tion.

Switches may also provide optional modes of oper-
ation such as alternate pathing. These optional
modes of operation are not covered by this stan-
dard and may not guarantee in-order Message
delivery.

5.3 Routing of subsequent micropackets in a
Message

Subsequent micropackets in a Message (identified
by TYPE = x’8’ and TYPEs x’B’ through x’E’) shall
be delivered to the same Final Destination as the
Header micropacket.

The VC field shall be used to distinguish which
Message the micropacket belongs to (of the four
VCs supported).

When a micropacket is received with the TAIL bit =
1, it indicates that the Message ends.

5.4 Error protection

If a uncorrectable error is detected in a micropacket
that is forwarded, the switch shall set the ERROR
bit for that micropacket.

Detected errors shall be logged or counted.

5.4.1 Mandatory error checking

The switch fabric shall pass the unchanged ECRC
with each micropacket as specified in HIPPI-6400-
PH.

Before sending any micropacket over a HIPPI-6400
link, the switch shall validate the ECRC and set the
ERROR bit if the ECRC indicates an error as spec-
ified in HIPPI-6400-PH.

5.4.2 Optional error checking

The switch fabric may verify the validity of the
ECRC at any point within the fabric.

The switch may also provide additional error detec-
tion or correction for internal data errors.

5.4.3 Congestion management

Time-out mechanisms defined in HIPPI-6400-PH
will act to prevent switch congestion due to lack of
progress on a HIPPI-6400 link, so long as the
Source end of the link is functional. However, fail-
ures in switch Source ports can prevent this mech-
anism from functioning.

Switches shall protect against this failure mode by
checking Source output ports for continued proper
function and by discarding data destined for all
failed Source output ports.

5.5 Data interleaving

There are two separate requirements for switch
fairness to resolve contention for shared resources.
Both micropackets and Messages shall be inter-
leaved as described. These two interleaving pro-

Source ULA
DB06-DB11

Destination ULA
DB00-DB05

Defined in
HIPPI-6400-PH

DB12-DB31

Figure 2 - Header micropacket addressing
5

cesses shall be considered independent and
applied without regard to each other.

5.5.1 Micropacket interleaving

Micropacket interleaving between the four VCs
shall be applied on a micropacket count basis.

When a switch port has more than one VC with
data available for output, the switch shall ensure
that micropackets from each VC are afforded an
equal opportunity for progress on a physical link.

The algorithm for choosing a micropacket from the
available VCs shall allow interleaving on a frequent
basis. The recommended algorithm is to interleave
VC streams on a single micropacket basis.

Implementations trying to keep short Messages
intact (to minimize latency) may use algorithms that
interleave on other than a single micropacket
basis. No implementations shall permit more than
69 micropackets from a particular VC to be trans-
ferred before moving on to the next VC. This limit
allows transfer of the maximum permitted VC0
Message (as specified in HIPPI-6400-PH).

Figure 3 shows a simplified switch configuration
with two input ports and one output port. Assuming

that traffic is available to send to port “C” on more
than one VC, a compliant switch alternates
between providing output across all busy VCs on
link “C”, not exceeding the micropacket count limit
before switching from one VC to the next VC.

5.5.2 Message interleaving

Message interleaving shall be applied whenever a
current Message to an output port is completed.

When a switch has more than one input port with
Messages ready for transfer to the same output
port (on the same VC), the switch shall ensure that
Messages from the input ports are afforded an
equal opportunity for progress. All ports with pend-
ing Messages shall be serviced prior to any other
port being serviced twice.

In figure 3, an example would be if both port “A”
and port “B” have multiple Messages available on
their VC0 links ready to send to port “C”. In this
example, Messages transferred out VC0 of port “C”
are required to alternate between Messages from
“A” and “B”.

Figure 3 - HIPPI-6400 Switch

VC0 B

VC1 B

VC2 B

VC3 B

VC0 C

VC1 C

VC2 C

VC3 C

6400 Link Source 6400 Link Dest

Switch
Core

B C

VC0 A

VC1 A

VC2 A

VC3 A

6400 Link Dest

A

6

6 ULA restrictions and reserved ULAs

Although HIPPI-6400 standards provide for a 48-bit
ULA space, the total ULA space is not available for
all uses. Part of the range of ULAs is reserved to
designate the addresses of network services and
for other network management functions.

ULA reservations by the IEEE for network services
as described in the Assigned Numbers RFC shall
be reserved for the same purposes in HIPPI-6400.
Additionally, to allow for backwards compatibility,
the 12 bit reserved HIPPI-SC addresses with 36
bits of prefix, as shown in table 5, shall be reserved
ULAs.

Each switch shall reserve a unique ULA for use by
the IEEE 802.1d Spanning Tree Algorithm and Pro-
tocol required for broadcast support.

All other ULAs are available for assignment to spe-
cific Destinations.

These addresses will be changed in the
upper bits to show a 48 bit ULA once a
block of ULAs has been assigned to the
HIPPI Networking Forum.

Note: Later registrations will be
added as an addendum to this stan-
dard, or as a revision of the stan-
dard.

Table 5 - Reserved ULAs

Start of
Range

End of
Range Description

x’0F90’ x’0FBF’ Reserved to preserve
compatibility with
HIPPI-SC address
trial self-discovery
process

x’0FC0’ x’0FDF’ Reserved for local
use

x’0FE0’ x’0FE0’ Messages pertaining
to switch configura-
tion, including HIPPI-
LE Address Resolu-
tion requests

x’0FE1’ x’0FE1’ All IP protocol traffic
conventionally
directed to the IEEE
802.1 broadcast
address as
described in IETF
RFC 1042 “Standard
for IP transmission
over 802.1 networks
[2]

x’0FE2’ x’0FE2’ RFC 1112 Host
extensions for IP mul-
ticasting class D
addresses not
assigned below [3]

x’0FE3’ x’0FE3’ RFC 1131 OSPF
specification All Rout-
ers (Class D address
224.0.0.5) [4]

x’0FE5’ x’0FE7’ Reserved

x’0FE8’ x’0FE8’ ISO/IEC 9542:1988
CLNP ES-IS all ES’s
[5]

x’0FE9’ x’0FE9’ ISO/IEC 9542:1988
CLNP ES-IS all ES’s
[5]

x’0FEA’ x’0FEA’ ISO/IEC 10589:1992
IS-IS all level 1 IS’s
[6]

x’0FEB’ x’0FEB’ ISO/IEC 10589:1992
IS-IS all level 2 IS’s
[6]

x’0FEC’ x’0FEC’ IEEE 802.1d MAC
bridging flooding

x’0FED’ x’0FED’ IEEE 802.1d MAC
bridging Spanning
Tree Protocol

x’0FEE’ x’0FEE’ Embedded switch
management agent

x’0FEF’ x’0FFC’ Reserved

x’0FFD’ x’0FFD’ Loopback logical
address for switches
to use when probing
other switches

Table 5 - Reserved ULAs

Start of
Range

End of
Range Description
7

The protocols used to access these services and
the means whereby these services keep track of
their configuration of the network are outside the
scope of this standard.

7 Admin micropackets

Admin micropackets are used for support and ini-
tialization of HIPPI-6400 links, Elements, and sys-
tems. Each labeled component in figure 4 could be
an Element.

There are two basic types of Admin micropacket
function:

- Within a HIPPI-6400 endpoint or switch,
Admin micropackets can be used for internal
control of components. This internal usage is
done for vendor convenience and is not
required to support HIPPI-6400 functionality.
Many of the defined Admin micropacket com-
mands will be useful for this control, but the
commands used for ULA assignment will not be
applicable.

- From one HIPPI-6400 Device (e.g. switch or
endpoint) to another, Admin micropackets are
used for topology discovery, ULA assignment,

and ULA discovery. The ability to send and then
receive an echoed micropacket may also be
useful as a diagnostic feature. Most other
Admin micropacket commands are not useful in
this context.

7.1 Elements

An Element is any component of a HIPPI-6400
system that is able to receive and send Admin
micropackets conforming to this standard.

Each end of a HIPPI-6400 link shall operate as an
Element. Other components of switches or adapt-
ers may optionally conform to the Element defini-
tion. These could include adapter cards, integrated
circuits, or software entities.

At a minimum, Elements shall support commands
and responses for the discovery of Element func-
tion, ULA assignment, and ULA discovery. Imple-
mentation of other functions called for by Admin
micropacket commands are optional. If an Element
does not implement an Admin command, it shall
return status to that effect in the response micro-
packet. All Elements shall respond to each Admin
micropacket command with the specified response
Admin micropacket.

7.2 Admin micropacket functions

A small set of commands allow for:

- Diagnostic “pings” between HIPPI-6400 Ele-
ments, either locally or across a link

x’0FFE’ x’0FFE’ loopback logical
address for hosts to
use when probing
switches for the
host’s logical
address.

x’0FFF’ x’0FFF’ Unknown or unas-
signed address. This
value should never
be used to address a
Destination or Desti-
nations. It can be
used to indicate that
the Source is
unaware of its Source
address or to signify
a unknown logical
address in higher
layer protocols.

Table 5 - Reserved ULAs

Start of
Range

End of
Range Description

Host
System

Host
Adapter

Link-end
Elements

Switch

Figure 4 - Potential HIPPI-6400 Elements

Switch
Port Card
8

- Initial Element address assignment

- Discovery of the function of an Element (e.g.
switch or non-switch)

- HIPPI-6400 Source ULA assignment

- Discovery of Destination ULAs attached to a
local switch

- Vendor specific register access

- Registration for broadcast

- Selection/configuration of a broadcast server

- Vendor defined functionality

7.3 Admin micropacket format

Table 6 and figure 5 both show the format of an
Admin micropacket. Admin micropackets contain:

- Key: The Key field is used in certain opera-
tions to validate that the originator is authorized
to perform the requested operation. Because
the key is only 8 bits in length and is returned in
response to the SET_ELEMENT_ADDRESS,

the protection provided by the key is minimal
and only protective against accidental changes.
Vendors may also choose to protect their sys-
tem configuration in other unspecified ways. For
example, a vendor may only allow commands
that cause configuration changes to occur
through a specific port.

- Hop Count: If the incoming hop count is
zero, the micropacket shall be processed or dis-
carded without a response. If the destination
Admin Element address is x’FFFFFFFF’, a hop
count of zero shall indicate that the Admin
micropacket is valid for local processing. All
other hop count values in conjunction with a
destination Admin Element address of
x’FFFFFFFF’ indicate that the micropacket shall
continue to be forwarded. The value contained
in the Hop Count field shall be decremented by
one each time an Admin micropacket exits an
Element. If a micropacket is received without a
valid Element address match and it cannot be
forwarded, it shall be discarded without a
response. See figure 6 for a diagram showing
how Element addresses are processed.

Key

Byte 0 of micropacket

Destination Admin Element Address

Command (table 8) Status Flags/Return Hop

Destination Admin Element Register

Source Admin Element Register

Source Admin Element Address

Data Register (Bytes 0:3)

Data Register (Bytes 4:7)

Data Register (Bytes 8:11)

Data Register (Byte 14) Data Register (Byte 15)Data Register (Bytes 12:13)

Byte 31 of micropacket

Figure 5 - Admin Micropacket Byte Format

Hop Count
9

- Destination Admin Register: The Destination
Admin Register field specifies a register within a
HIPPI-6400 Element. There are no specific reg-
isters required in any Element by this standard
and use of any register(s) is optional.

- Destination Admin Element Address: The
Destination Admin Element Address field shall
be used to specify a particular Element of a
HIPPI-6400 system that is the destination of an
Admin micropacket command.

- Admin Command: The Admin Command
field shall contain a value to specify the mean-
ing and interpretation of the Admin micropacket.
Table 8 contains all of the defined values, along
with a description of the functions and parame-
ters associated with each command.

- Status Flags / Return Hop Count: When the
Admin micropacket is a command, the Return
Hop Count field shall be used to communicate
the proper hop count value for returning status.
The Return Hop Count field may be set to x’FF’
when using Element addressing in lieu of a spe-
cific return distance.
When the Admin micropacket is a response, the
Status Flags field shall be used to return opera-

Figure 6 - Admin micropacket
addressing

Micropacket
Element
Address

matches local
Element
address?

Process
locally

Micropacket
Element

Address =
x’FFFFFFFF’

and Hop
Count = 0?

no

yes

no

Hop Count =
0?

no

Discard
micropacket

yes

yes

Decrement
Hop Count
and forward
micropacket

Local
Element

Address =
x’FFFFFFFF’?

no
yes

Table 6 - Admin Micropacket Format

Byte Function

0 Key

1 Hop Count

2:3 Destination Admin Register
(designates a local register
within an Element)

4:7 Destination Admin Element
Address (Destination Element
address in a HIPPI-6400
domain)

8 Admin Command (see table 8)

9 Status flags (see table 7) /

Return Hop Count

10:12 Source Admin Register (desig-
nates a local register within an
Element)

12:15 Source Admin Element Address
(Source Element address in a
HIPPI-6400 domain)

16:31 Data Register
10

tion results. Table 7 provides definitions for each

bit. In each case, flag bit = 1 indicates that the
listed exception has occurred.

- Source Admin Register: The Source Admin
Register field may be used to specify a register
within a HIPPI-6400 Element that can be used
as a “reply-to” Element address for certain oper-
ations. There are no specific registers required
in any Element by this standard.

- Source Admin Element Address: The
Source Admin Element Address field is used to
specify the particular Element of a HIPPI-6400
system that initiated a sequence of Admin pack-
ets. The source Admin Element address shall
be used as a “reply-to” Element address.

- Data Register: The Data Register is a 16
byte field that shall be used to carry data for any
Admin operation

7.4 Admin micropacket functions

Descriptions are provided for each of the Admin
commands and responses. Some commands are
described completely in the following paragraphs.
Other commands are building blocks for functions
that will be described in later clauses, such as ULA
configuration and the broadcasting of Messages.

7.4.1 PING

PING may be used to request a response micro-
packet for diagnostic validation. The Data Register
field may be used to send data that will be echoed
in the PING_RESPONSE.

The receiving Element shall return a
PING_RESPONSE.

7.4.2 PING RESPONSE

PING_RESPONSE acknowledges the PING com-
mand. The receiving Element may use this
response to validate that the PING’ed Element is
operational. The Data Register field shall contain a
copy of the data originally sent in the PING com-
mand.

7.4.3 SET_ELEMENT_ADDRESS

SET_ELEMENT_ADDRESS may be used to con-
figure an Element with a specific Element address.

The use of Admin micropacket commands for Ele-
ment address assignment is optional. No Element
is required to assign Element addresses.

If this is the first SET_ELEMENT_ADDRESS com-
mand received after a reset, the value in the Key
field shall be ignored. Later uses of the
SET_ELEMENT_ADDRESS command shall vali-
date that the Key field value matches the current
key.

If the above criteria for key value are met, the
receiving Element shall set its Admin Element
address to be equal to the value set in the lower 4
bytes (12:15) of the Data Register field and shall
set its key value to the new key provided in byte 8
of the Data Register. The provided key shall be
retained for subsequent command validity check-
ing. Once the Admin Element address is set, it
shall not be changed without validating the key
value or until the Element is reset.

Regardless of the success or failure of the com-
mand, the receiving Element shall respond with a
SET_ELEMENT_ADDRESS_RESPONSE.

7.4.4 SET_ELEMENT_ADDRESS_RESPONSE

This response acknowledges the
SET_ELEMENT_ADDRESS command. The cur-
rent valid key shall be returned in byte 8 of the Data
Register field. The current Element address of this
Element shall be returned in the lower 4 bytes
(12:15) of the Data Register field. The current Ele-
ment address and proper key value shall be
returned regardless of the success or failure of the
SET_ELEMENT_ADDRESS operation.

The use of Admin micropacket commands for Ele-
ment address assignment is optional. An Element
incapable of setting its Element address shall set
the Unimplemented Command flag in the flag byte.

Table 7 - Status Flags

Bit Meaning

0 Undefined Operation

1 Invalid Key

2 Parameter out of range

4 Invalid Element Address

5 Data Register Not valid

6 Unimplemented Command

7 Operation Failed
11

Table 8 - Admin Commands

Cmnd
Value Function

V
C Key Req’d Action Mandatory?

x’0’ PING 1 No Asks for a
PING_RESPONSE

No

x’1’ PING_RESPONSE 2 No Acknowledges the PING
command

Yes

x’2’ SET_ELEMENT_
ADDRESS

1 Yes, except first
time after reset

Set Admin Element
address

No

x’3’ SET_ELEMENT_
ADDRESS_
RESPONSE

2 Yes Acknowledges the
SET_ELEMENT_
ADDRESS command

No

x’4’ RESET 1 Yes Commands Element to
initialize itself

No

x’5’ EXCHANGE_
ELEMENT_
FUNCTION

1 No Provides and requests
Element Function

Yes for endpoints
and switch control
Elements, not
required for links

x’6’ ELEMENT_
FUNCTION_
RESPONSE

2 No Response to a
EXCHANGE_
ELEMENT_FUNCTION
command

Yes for endpoints
and switch control
Elements, not
required for links

x’7’ ULA_REQUEST 1 No Requests a Source ULA Yes for endpoints
and switch control
Elements, not
required for links

x’8’ ULA_RESPONSE 2 No Provides a Source ULA. Yes for endpoints
and switch control
Elements, not
required for links

x’9’ READ_REGISTER 1 Optional (use of a
key may or may not
be required)

The sender requests a
register value

No

x’A’ READ_REGISTER_
RESPONSE

2 No Returns data from the
requested register

No

x’B’ WRITE_
REGISTER

1 Optional (use of a
key may or may not
be required)

Requests that a register
value be updated

No

x’C’ WRITE_
REGISTER_
RESPONSE

2 No Status for a
WRITE_REGISTER

No

x’D’ ERROR_
RESPONSE

2 No Indicates an error Yes

x’E’ ULA_LIST_
REQUEST

1 No Asks for a list of con-
nected ULAs

No

x’F” ULA_LIST_
RESPONSE

2 No Provides a list of con-
nected ULAs

Yes for switches

x’10’ PORT_REMAP 1 Optional Changes the ULA to port
routing for one input port

No

x’11’ REMAP_RESPONSE 2 No Status for a
PORT_REMAP

Yes for switches
12

7.4.5 RESET

RESET shall cause an Element to initialize itself.
This includes clearing the current Element address
and key. It may also include other vendor unique
functions and may not be the same as the actions
caused by a HIPPI-6400 link reset or initialize.

RESET may be propagated further depending
upon vendor specific implementation and configu-
ration.

There is no response for a successful RESET. A
RESET command shall return an
ERROR_RESPONSE if the operation fails or the
RESET operation is unimplemented by the
addressed Element.

7.4.6 EXCHANGE_ELEMENT_FUNCTION

The sender shall provide its Element function value
and set its Element broadcast configuration bits in
byte (15) of the Data Register and requests that
the receiver respond with a
ELEMENT_FUNCTION_RESPONSE. Element
function shall be one of the following:

- Switch Element (b’000000’)
Used for a switches that assign ULAs to end-
points

- Link-end Element (b’000001’)
Used when the Element is a link-end that does
not directly assign or use ULAs

- Non-switch Element (b‘000010’)
Used for an endpoint that requires a ULA
assignment

- Unknown Element (b’000011’)
Used when the Element does not deal with
ULAs in any manner

The upper two bits in the Element function byte
shall be used to communicate broadcast parame-
ters (see Clause 9 and Clause 10 for a description
of broadcast functions). The most significant bit, if
set to b’1’, shall indicate that this Element desires
to receive broadcast Messages. The second most
significant bit, if set to b’1’, shall indicate that this
Element is capable and willing to act as a broad-
cast server for this switch.

Elements capable and willing to act as a broadcast
server for this switch shall issue this operation at
least once per second and no more than twice per
second.

Other bytes in the Data Register are defined as
Vendor Unique and may be used in any way
desired by the equipment provider.

7.4.7 ELEMENT_FUNCTION_RESPONSE

The receiver of an EXCHANGE_ELEMENT_
FUNCTION command, the sender shall respond by
sending the ELEMENT_FUNCTION_RESPONSE
with its Element function value in byte (15) of the
Data Register.

x’12’ PORT_MAP_
REQUEST

1 Optional Gets the physical switch
port used to send to a
given ULA

No

x’13’ PORT_MAP_
RESPONSE

2 No Returns the physical
switch port used to send
to a given ULA

Yes for switches

x’14’ -
x’7F’

Reserved N
/
A

N/A Not defined No one shall send
these

x’80’-
x’FF’

Vendor defined 1
/
2

Optional Optional action defined
uniquely by vendor
(commands must be sent
on VC1, responses must
be sent on VC2)

No

Table 8 - Admin Commands

Cmnd
Value Function

V
C Key Req’d Action Mandatory?
13

Element functions are specified in the
EXCHANGE_ELEMENT_FUNCTION command.
The most significant bit of the Element function
byte shall be echoed as received.

The second most significant bit of the Element
function byte shall be set to b’1’ if the switch has
selected the receiver of this response to be the
broadcast server for this switch. The bit will be set
to b’0’ if the receiver of this response has not been
selected to be the broadcast server for this switch.

Other bytes in the Data Register are specified as
Vendor Unique and may be used in any way
desired by the equipment provider.

7.4.8 ULA_REQUEST

The sender requests that the receiver return a
HIPPI-6400 ULA for the sender to use as a Source
ULA via a ULA_RESPONSE. The sender shall pro-
vide his offered base ULA in bytes (10:15) of the
Data Register. The most significant bit of byte 6 of
the Data Register shall indicate that this is an addi-
tional request for an address and that previous
addresses assigned to this port shall be retained
as valid in addition to the address(es) assigned by
this instance of the command. The balance of
bytes (6:7) shall contain a count of desired
addresses.

As specified in 8.2, this command is normally
issued by endpoints or switches.

7.4.9 ULA_RESPONSE

The ULA_RESPONSE shall be sent when
requested by a ULA_REQUEST command.

Bytes (10:15) of the Data Register shall contain a
ULA for the receiver to use as a Source ULA. This
may or may not be the offered Source ULA passed
in the ULA_REQUEST command. For a receiver
needing to add a single Source ULA, this value
shall be directly utilized. If the most significant bit of
byte 6 is set, it indicates that the Source ULA(s)
assigned shall be considered as additional to those
assigned in a previous ULA_REQUEST/
ULA_RESPONSE operation. For a receiver need-
ing multiple Source ULAs, the balance of bytes
(6:7) shall be used as a count of sequential ULAs
that start at the base value contained in bytes
(10:15) of the Data Register.

The first ULA registered on a port using the
ULA_REQUEST/ULA_RESPONSE shall be the
only Source ULA used for sending broadcast Mes-
sages from this port.

As specified in 8.2, this response is normally
issued by switches.

7.4.10 READ_REGISTER

The sender requests a value from the register
specified in the Destination Admin Element Regis-
ter. The receiver shall respond with a
READ_REGISTER_RESPONSE.

The use of Admin micropackets for register access
is optional. If register access commands are sup-
ported, there are no requirements for particular
functions or modes specified by this standard.

Contents of registers and their meaning are not
specified in this standard.

7.4.11 READ_REGISTER_RESPONSE

The sender shall return the data from the register
in the Data Register field.

- Single bytes sent in byte (15)

- Two byte words sent in bytes (14:15)

- Four byte words sent in bytes (12:15)

- Eight byte words sent in bytes (8:15)

- Sixteen byte words sent in bytes (0:15)

The use of Admin micropackets for register access
is optional. If register access commands are sup-
ported, there are no requirements for particular
functions or modes specified by this standard. An
Element incapable of supporting this operation
shall set the Unimplemented Command flag in the
flag byte.

Contents of registers and their meaning are not
specified in this standard

7.4.12 WRITE_REGISTER

The sender requests that a register value be
updated with the value contained in the Data Reg-
ister. The receiver shall acknowledge the request
with a WRITE_REGISTER_RESPONSE.

- Single bytes sent in byte (15)
14

- Two byte words sent in bytes (14:15)

- Four byte words sent in bytes (12:15)

- Eight byte words sent in bytes (8:15)

- Sixteen byte words sent in bytes (0:15)

The use of Admin micropackets for register access
is optional. If register access commands are sup-
ported, there are no requirements for particular
functions or modes specified by this standard. No
Element is required to issue this command.

Contents of registers and their meaning are not
specified in this standard.

7.4.13 WRITE_REGISTER_RESPONSE

The sender shall echo the value written to the
specified Data Register. The contents of the Data
Register shall be sent as zeros if the update was
not successful.

The use of Admin micropackets for register access
is optional. If register access commands are sup-
ported, there are no requirements for particular
functions or modes specified by this standard. An
Element incapable of supporting this operation
shall set the Unimplemented Command flag in the
flag byte.

Contents of registers and their meaning are not
specified in this standard.

7.4.14 ERROR_RESPONSE

ERROR_RESPONSE shall be sent when a unrec-
ognized command is received on VC1. No
response shall ever made to Admin micropackets
received on VC0, VC2, or VC3.

Byte (15) of the Data Register shall contain the
Admin command value from the unrecognized
micropacket that was the cause of this response.

7.4.15 ULA_LIST_REQUEST

ULA_LIST_REQUEST may be sent to Switch Ele-
ments to request information on whether attached
HIPPI-6400 endpoints are registered to receive
broadcast Messages and to learn the Source ULA
that will be used for all broadcast Messages origi-
nated from the port. The list also includes a ULA for
communicating with directly attached switches.

One request may be made to learn the status for
each physical port of the switch. The data register
(byte 2:3) shall contain a number (1 thru n, corre-
sponding to the physical port numbering) to identify
which position in the list is being requested.

7.4.16 ULA_LIST_RESPONSE

ULA_LIST_RESPONSE shall be returned by a
switch in response to a ULA_LIST_REQUEST.
Switches shall use this response to provide visibil-
ity into a sequentially organized list of each switch
port.

The list shall contain one entry for each physical
port of this switch, numbered 1 thru n.

For directly attached switches, the port ULA shall
be the unique address assigned to the attached
switch for use by the IEEE 802.1d Spanning Tree
Algorithm and Protocol required for broadcast sup-
port. This ULA is learned through the switch-to-
switch ULA_REQUEST/ULA_RESPONSE. For
endpoints, the port ULA shall be the first ULA reg-
istered using the ULA_REQUEST/ULA
RESPONSE.

Byte (0) of the ULA_LIST_RESPONSE shall
include the Element Function byte for the port,
including the upper two bits in the Element Func-
tion used to communicate broadcast configuration
parameters. The bit that signifies the broadcast
server shall only be set for the port of the broad-
cast server and shall be zeroed for all other ports.
Ports that have not been registered for broadcast
Messages (performing both the
EXCHANGE_ELEMENT_FUNCTION/
ELEMENT_FUNCTION_RESPONSE and
ULA_REQUEST/ULA_RESPONSE) shall return
Byte (0) = b’00000011’.

Bytes (2:3) of the ULA_LIST_RESPONSE shall
contain the list number copied from the
ULA_LIST_REQUEST.

Bytes (10:15) of the Data Register shall contain the
port ULA.

When access is attempted to list values not
included in the list (past the end of the list), the
Parameter out of range bit shall be set in the
response. The Operation Failed bit shall not be set
in this case.
15

7.4.17 PORT_REMAP

PORT_REMAP may be sent to request a modifica-
tion in the port mapping table used for selection of
an output switch port (from the destination ULA
contained in a micropacket). The operation
requests a new port mapping for a single ULA on
one input port. Ports are numbered from 1 thru n,
corresponding to the physical port numbering.

Bytes (10:15) of the Data Register shall contain the
Destination ULA being re-mapped. Bytes (2:3)
shall identify the input port being re-mapped. Bytes
(6:7) shall indicate the switch output port to be
used when the specified Destination ULA is
received on the specified switch input port. A zero
value shall signify that there is no valid port map-
ping for this ULA on this input port (i.e., Messages
sent to this ULA shall be discarded).

7.4.18 REMAP_RESPONSE

REMAP_RESPONSE shall be returned by a switch
in response to a PORT_REMAP command.
Switches shall use this response to indicate suc-
cess or failure of the PORT_REMAP command.

REMAP_RESPONSE shall be sent after the
PORT_REMAP operation has been completed.
This sequence (completing the action prior to
sending the status) allows the PORT_REMAP initi-
ator to determine when he may send a HIPPI-6400
Message and have it transmitted through the
switch to the new desired output port.

All bytes of the Data Register shall echo the data
sent in the PORT_REMAP operation.

If an request is made to re-map a port that is phys-
ically not present in the switch, the Parameter out
of range bit shall be set in the response and the
command shall not be performed.

The Operation Failed bit shall be set in any case
where the re-mapping operation fails.

7.4.19 PORT_MAP_REQUEST

PORT_MAP_REQUEST may be used to request
the return of an entry in the port mapping table
used to map a ULA to a physical port. The opera-
tion requests a port mapping for a single ULA on
one input port.

Bytes (10:15) of the Data Register shall contain the
requested Destination ULA mapping. Bytes (2:3)
shall identify the input port.

7.4.20 PORT_MAP_RESPONSE

PORT_MAP_RESPONSE shall be returned by a
switch in response to a PORT_MAP_REQUEST.
Switches shall use this response to return the
physical port mapping that will be used for sending
to a specified Destination ULA on an input port.
Ports are numbered from 1 thru n, corresponding
to the physical port numbering.

Bytes (2:3) of the Data Register shall echo the
input port sent in the PORT_MAP_REQUEST
operation.

Bytes (6:7) of the Data Register shall indicate the
switch output port used when the specified Desti-
nation ULA is received on the specified switch
input port. A zero value shall signify that there is no
valid port mapping for this ULA on this input port
(i.e., Messages sent to this ULA will be discarded).

Bytes (10:15) of the Data Register shall echo the
Destination ULA sent in the
PORT_MAP_REQUEST operation.

If an request is made for a port that is physically
not present in the switch, the Parameter out of
range bit shall be set in the response. The Opera-
tion Failed bit shall not be set in this case.

7.4.21 Reserved Admin micropacket functions

Reserved Admin micropacket functions shall not
be sent.

Receivers shall perform normal Element address
processing and forwarding of Admin micropackets,
regardless of the Function code.

Micropackets received for local processing with
Reserved Function codes shall be responded to
with a ERROR_RESPONSE.

7.5 Addressing of Admin micropackets

The Admin micropacket format contains a 32 bit
source and destination Admin Element address.
This space is adequate to uniquely identify Ele-

ments in configurations of up to 2 32 Elements.
16

With Elements that have two ports, a received
Admin micropacket shall either be:

- processed locally by the Element

- discarded

- forwarded out the second port

Response Admin micropackets shall be sent on the
port that received the original Admin micropacket
command. Response Admin micropackets shall
use the source Admin Element address and return
hop count provided in the original Admin micro-
packet command as the destination Admin Ele-
ment address and hop count.

Elements that have a single port shall discard
Admin micropackets that are not addressed to be
processed locally.

There are two possible destination Admin Element
addresses that can result in delivery of an Admin
micropacket to an Element for local processing:

- If the destination Admin Element address =
x’FFFFFFFF’ and hop count = 0. This technique
allows access to neighbors (who may possibly
have unknown Element addresses) by setting
the hop count to control how far distant an Ele-
ment is in hop count. For example, a hop count
of three would pass through three neighboring
Elements before being decremented to zero
and being processed by the fourth Element.

- When the assigned Element address is not
equal to x’FFFFFFFF and the assigned Element
address matches the destination Admin Ele-
ment address. This technique allows use of a
flat logical address space for access to each
Element when all of the Element addresses are
known.

If a received Admin micropacket contains one of
the two possible valid Element addresses pointing
to the current local Element, it shall be processed
locally. Otherwise, if the hop count value is zero,
the packet shall be discarded. Then the hop count
shall be decremented by one and the packet shall
be forwarded to the Element’s other port, i.e., the
port that did not deliver this micropacket to this Ele-
ment.

Admin micropackets shall be sent on the VC speci-
fied for each command and response:

- No Admin micropackets shall be sent on
VC0 or VC3

- All command Admin micropackets shall be
sent on VC1.

- All response Admin micropackets shall be
sent on VC2.

Receivers of Admin micropackets shall only pro-
cess and/or respond to Admin micropackets
received on the specified proper VC:

- Admin micropackets received on VC0 or
VC3 shall be logged as an error and discarded
without a response.

- Admin micropackets received on VC1 shall
be processed as a received command, dis-
carded (due to an expired hop count), or for-
warded (if the Element address does not
match).

- Admin micropackets received on VC2 shall
be processed as a received response, dis-
carded (due to an expired hop count), or for-
warded (if the Element address does not
match). Responses that are received unexpect-
edly shall be logged as an error and discarded
without a response. A response Admin micro-
packet shall never be sent in reply to an Admin
micropacket received on VC2.

Admin micropackets that arrive with either ERROR
= 1 or TAIL = 0 shall be logged as an error and dis-
carded without a response.

Selection of the proper port for packet forwarding,
from a set of ports in a multi-port Element, is not
covered by this standard. Multi-port Element sup-
port is optional and may be added in a vendor
unique manner.

7.6 Admin Element address assignment

Each Element in a HIPPI-6400 connected collec-
tion of Elements may be provided an Element
address for operation and control. Element
addresses may be assigned through any suitable
means, including use of the commands,
SET_ELEMENT_ADDRESS and
SET_ELEMENT_ADDRESS_RESPONSE. These
commands allow an intelligent system Element to
assign Element addresses to other Elements
within the configuration. Element addresses shall
be assigned so that Element address duplication in
17

the connected Element address environment does
not occur.

Regardless of whether an Element address is
assigned, each Element shall always respond to an
Element address of x’FFFFFFFF’ when hop count
= 0.

This standard does not specify how the intelligent
system Element chooses Element addresses for
assignment. The discovery of topologies beyond
two ports and the mechanisms for multi-port Ele-
ment address assignment are not covered by this
standard. Multi-port Element support is optional
and may be added in a vendor unique manner.

7.7 Admin micropacket flow control

Admin micropacket operations (with the exception
of reset) consist of a command and a paired
response operation. To avoid overrun of receivers,
no more than one operation shall be outstanding to
a single destination Element from a single source
Element in a time period of one second.Therefore,
Elements shall send only a single command:

- PING

- SET_ELEMENT_ADDRESS

- EXCHANGE_ELEMENT_FUNCTION

- ULA_REQUEST

- READ_REGISTER

- WRITE_REGISTER

- ULA_LIST_REQUEST

- PORT_REMAP

- PORT_MAP_REQUEST

before receiving the paired response micropacket:

- PING_RESPONSE

- SET_ELEMENT_ADDRESS_RESPONSE

- ELEMENT_FUNCTION_RESPONSE

- ULA_RESPONSE

- READ_REGISTER_RESPONSE

- WRITE_REGISTER_RESPONSE

- ULA_LIST_RESPONSE

- REMAP_RESPONSE

- PORT_MAP_RESPONSE

or until a time-out period of at least one second has
elapsed.

Since RESET has no response, Elements that
have sent a RESET shall wait at least one second
before attempting any other operation to the Ele-
ment that has been reset.

8 ULA Configuration

In addition to switching HIPPI-6400 Messages
between ports, HIPPI-6400 ports shall support in-
band communications for switch management
functions.

To support topology discovery and ULA configura-
tion, HIPPI-6400 Destination ports shall be capable
of receiving and processing micropackets with
TYPE = Admin over any connected HIPPI-6400
link.

To support topology discovery and ULA configura-
tion, HIPPI-6400 Source ports shall be capable of
sending micropackets of TYPE = Admin over any
connected HIPPI-6400 link.

8.1 Determination of Topology

As a step in the procedure to establish a ULA for
self identification (used as the Source ULA field),
endpoints and switches shall identify if they are
connected to another endpoint or to a switch.

Intervening link support hardware and interface
Elements may be present on either side of a
HIPPI-6400 link. These intermediate Elements will
typically not contain information useful for ULA
assignment. The endpoint discovering topology
information shall identify these intermediate points
to discover the location of an Element capable of
exchanging information about ULA configuration.

Information about the function of connected Ele-
ments is collected by sending an
EXCHANGE_ELEMENT_FUNCTION Admin
micropacket. The endpoint may directly select a
destination if the appropriate Admin Element
address information is already known, or it may
use hop-count Element addressing to discover
18

what is connected and how far away (in hops) the
Element of interest is located.

If an Element responds that it is a link-end Element
or a unknown Element, the probing system shall
continue to the next Element. Once a connected
Element is identified as an endpoint or switch,
topology determination is complete.

In figure 7, an example of an endpoint to endpoint

link is shown. In this example, System A needs to
determine the Element function of System B, for
ULA configuration. System B also needs to deter-
mine the Element function of System A, for the
same reason. The following example traces the
operation of System A.

System A begins by probing each Element that
supports Admin micropackets until it reaches the
endpoint of System B.

a. System A sends an
EXCHANGE_ELEMENT_FUNCTION Admin
micropacket to the closest point with an Ele-
ment address of x’FFFFFFFF’ and a hop-count
of 0. This will be received and processed by
Link-End A. Link-End A will respond in the
ELEMENT_FUNCTION_RESPONSE Admin
micropacket that it is a link-end Element. Sys-
tem A must therefore go further to reach
another endpoint or switch.

b. System A sends an
EXCHANGE_ELEMENT_FUNCTION Admin
micropacket to the next closest point with an
Element address of x’FFFFFFFF’ and a hop-
count of 1. This will be received and processed
by Link-End B. Link-End B will respond in the
ELEMENT_FUNCTION_RESPONSE Admin
micropacket that it is a link-end Element. Sys-
tem A must therefore go further to reach
another endpoint or switch.

c. System A sends an
EXCHANGE_ELEMENT_FUNCTION Admin
micropacket to the 3rd closest point with an Ele-
ment address of x’FFFFFFFF’ and a hop-count
of 2. This will be received and processed by
System B. System B will respond in the
ELEMENT_FUNCTION_RESPONSE Admin
micropacket that it is an endpoint. System A
now knows where to exchange information
regarding ULAs.

In the above example, System A presumably would
have been aware that the most directly attached
component (Link-End A) is part of its own configu-
ration and that it need not communicate with that
component. It therefore would not have needed to
start with a hop-count of 0 (but was not detrimen-
tally effected by doing so).

System B could determine the type of Element for
System A in two ways:

- System B could duplicate the above steps in
reverse.

- System B could use the information provided
in the EXCHANGE_ELEMENT_FUNCTION
command that System A sent to System B
when the third step in the above exchange took
place. Endpoints should not wait for the other
end to perform an exchange, but if the
exchange occurs at an appropriate time, they
may take advantage of the occurrence.

8.2 ULA exchange

Once the other end of the link has been identified
as to type (switch or non-switch endpoint), ULAs
are configured.

8.2.1 Endpoints on both ends

If both ends of the link are endpoints, each side
shall use the Source ULA assigned to it using the

System A

System B

Link-End A

Link-End B

HIPPI-6400
Link

Figure 7 - Endpoint to endpoint connect
19

procedures specified in the IEEE 802 Overview
Standard.

8.2.2 Switches on both ends

Switch to switch ULA configuration shall occur to
exchange ULAs for the broadcast function. A
ULA_REQUEST shall be sent by each switch to all
directly connected switches. Upon receipt of a
ULA_REQUEST Admin micropacket, the receiving
switch shall respond with a ULA_RESPONSE
Admin micropacket. The ULA_RESPONSE shall
contain a unique ULA assigned to the responding
switch for use by the 802.1d Spanning Tree Algo-
rithm and Protocol.

Switch to switch ULA discovery to learn the full set
of connected ULAs on distant switches is handled
outside of this standard. Methods of switch config-
uration could include static manual table entry or
automated ULA learning algorithms.

8.2.3 Endpoint to switch

If endpoints discover that they are connected to
switches, they shall advertise their Source ULA
(assigned to the endpoint using the procedures
specified in the IEEE 802 Overview Standard). The
ULA offer shall be made by sending a
ULA_REQUEST Admin micropacket.

Upon receipt of a ULA_REQUEST Admin micro-
packet, the receiver shall respond with a
ULA_RESPONSE Admin micropacket. The
ULA_RESPONSE shall contain a Source ULA
valid for the ULA_RESPONSE recipient. This ULA
may be the same as advertised in the original
ULA_REQUEST offer or it may be different.

This returned Source ULA shall be accepted and
subsequently used in all HIPPI-6400 Messages by
the receiver of the ULA_RESPONSE Admin micro-
packet.

Regardless of whether the returned Source ULA is
the same as the Source ULA originally offered by
the endpoint, the switch is the final selector of the
Source ULA that will be used by the endpoint.

Switches shall prevent a single ULA from being
assigned more than once in the same fabric.

Switches shall wait for connected endpoints to ini-
tiate ULA exchange.

9 Broadcast

All switches shall either directly support the broad-
cast of Messages or shall provide support of
broadcast servers.

9.1 Broadcast Operation

Messages sent to the broadcast address shall be
delivered to all endpoints within a HIPPI-6400 fab-
ric that have registered their desire to receive
broadcasts.

9.2 Registration for broadcast

Attached endpoints and switches may register to
receive broadcasts. This shall be done by setting
the most significant bit of the Element function byte
to b’1’ in the EXCHANGE_ELEMENT_FUNCTION
operation. Attached endpoints and switches may
choose not to receive broadcast Messages. This
shall be done by setting the most significant bit of
the Element function byte to b’0’ in the
EXCHANGE_ELEMENT_FUNCTION operation.

Switches shall maintain a list of ports. This list shall
include one entry with a ULA and an element func-
tion byte for:

- each endpoint directly connected to this
switch that has made at least one
ULA_REQUEST

- each switch directly connected to this switch
that has provided its unique ULA (via the
ULA_REQUEST/ULA_RESPONSE process)
for the IEEE 802.1d Spanning Tree Algorithm
and Protocol.

Endpoints registered to receive broadcasts shall be
sent any broadcast Message regardless of its point
of origin. Directly connected switches shall be sent
broadcast Messages in accordance with the
802.1d Spanning Tree Algorithm and Protocol.

9.3 Spanning Tree Operation

Switches that have registered to receive broadcast
Messages shall participate in the IEEE 802.1d
Spanning Tree Algorithm and Protocol, either
directly or through an external broadcast server.
This algorithm constructs a loop-free topology
(called the spanning tree) by placing selected links
in the network in the forwarding state and non-
20

selected links in the blocking state for the purposes
of broadcast. To avoid broadcast loops, switches
(or their designated broadcast server) shall propa-
gate broadcast Messages only along those links
which are placed in the forwarding state by the
Spanning Tree Algorithm and Protocol.

To construct the spanning tree, switches exchange
IEEE 802.1d configuration Bridge Protocol Data
Units (BPDUs) which contain parameters (e.g. root
ID, path cost, port identifier) for use by the span-
ning tree algorithm. The periodic exchange of
BPDUs both configures the initial spanning tree
and reconstructs the spanning tree in the event of
switch failure(s) and/or the addition of new equip-
ment to the network.

10 Broadcast Emulation

Non-broadcast capable switches shall route broad-
cast Messages to a broadcast server. Endpoints
selected as broadcast servers shall forward
received broadcast Messages to each attached
endpoint port that has registered to receive them.
Additionally, endpoints selected as broadcast serv-
ers shall implement the IEEE 802.1d Spanning
Tree Algorithm and Protocol and shall send broad-
cast Messages to those directly connected
switches whose links have been placed in the for-
warding state.

10.1 Supported broadcast ULAs

Table 9 shows the minimum set of broadcast ULAs
that shall be supported.

10.2 Selection of broadcast server

Non-broadcast capable switches shall select a
broadcast server from attached hosts who have
indicated their capability and willingness to perform
the broadcast server function. Any host that
requires broadcast functionality should implement
a broadcast server function to guarantee that
broadcast functionality will be available if con-
nected to a non-broadcast capable switch.

The indication of qualified broadcast servers is pro-
vided by an EXCHANGE_ELEMENT_FUNCTION
operation with the second most significant bit of the
Element function byte set to b’1’.

One server shall be selected per non-broadcast
capable switch. The server shall be notified by
returning the second most significant bit of the Ele-
ment function byte set to b’1’ in the
ELEMENT_FUNCTION_RESPONSE.

The EXCHANGE_ELEMENT_FUNCTION and
ELEMENT_FUNCTION_RESPONSE shall be
exchanged at intervals of from one to two per sec-
ond. This continued exchange allows selection of a
broadcast server as needed to deal with equipment
failures and to accommodate added or removed
systems. If a broadcast server fails to provide a
EXCHANGE_ELEMENT_FUNCTION within 5 sec-
onds, the switch shall select a new broadcast
server.

10.3 Broadcast Server Configuration

Switches shall make available a list of broadcast
information through the ULA_LIST_REQUEST and
ULA_LIST_RESPONSE operations. Hosts
selected to be broadcast servers shall request this
list and use it to determine which ports should
receive broadcast Messages.

The broadcast server shall configure the switch
ULA mapping using PORT_REMAP Admin micro-
packets. All Messages with the broadcast ULA,
unless being sent by the broadcast server, shall be
delivered to the broadcast server. This requires
mapping each broadcast address, on each input
port, to point to the broadcast servers own physical
port.

Broadcast server configuration shall be performed
once each time a broadcast server is selected.

Table 9 - Supported broadcast ULAs

ULA Function

0x’FFFFFFFFFFFF
’

General broadcast
address

0x’0180C2000000’ 802.1d bridge group
address

0x’0180C2000001’
thru
0x’0180C2000000’

Reserved for future
802.1d standardization

0x’0180C200000F’ All LANs bridge man-
agement group address
21

10.4 Sending Broadcast Messages

The broadcast server shall send broadcast Mes-
sages sequentially. For each destination, the
broadcast server shall configure its own port map-
ping so that the particular broadcast address ULA
points to the desired physical port. The process is:

- send an PORT_REMAP admin micropacket

- wait for a PORT_REMAP_RESPONSE
micropacket

- send the broadcast Message

The process shall be repeated for each endpoint
physical port registered to receive broadcasts or for
each directly connected switch needing to receive
the Message as required by the 802.1d Spanning
Tree Algorithm and Protocol.
22

Annex A Switching
(informative)

Switching

A.1 General

HIPPI-6400 switching of Messages is accom-
plished by processing the Destination ULA field of
the HIPPI-6400-PH MAC header. This may be
done based on the complete contents of the Desti-
nation ULA (48 bits) or on a subset of the field.

If a subset of the Destination ULA is used for
switching, switches must ensure that Source ULAs
are unique in the portion of the ULA operated on by
the switch. Clause 8 describes the process of ULA
configuration that gives switches final authority in
configuration of Source ULAs.

When connections are made to other networks, the
address range of the two (or more) networks is lim-
ited by the smaller of the connected address
ranges.

For example, HIPPI-PH can be switched to com-
municate with HIPPI-6400 so long as all of the
communicating systems restrict their addresses to
12 bits. The total number of addresses is therefore
limited to 4096 (minus reserved addresses).

The Destination ULA field in the Header micro-
packet is used to control HIPPI-6400 physical layer
switches, supporting the interconnection of many
Devices. Figure 8 shows an example configuration
that will be used to describe how HIPPI-6400
switches function. Three hosts and two switches
are shown, actual configurations may be smaller or
larger.

Although there is only a single mode of operation
(ULA addressing) specified for HIPPI-6400, users
can achieve a form of source routing (as described
in HIPPI-SC) by their selection of port configura-
tion.

A.2 Logical addressing

With logical addressing, ULAs specify where a
Message is to be delivered, not the path to take to

get there. Originating Sources use the same ULA
to reach a Final Destination, no matter where the
Originating Source is located.

In figure 8, Host X, Host Y, and even Host Z can
use ULA “3” to specify that a Message should be
sent to Host Z.

With ULAs, the intermediate switches are responsi-
ble for selecting an appropriate path.

It is envisioned that switches can be built to use
look-up tables at each input port to map ULAs to
Destinations. A look-up table can be indexed using
the Destination ULA field. The look-up table would
be used to hold a possible path(s) for a Destina-
tion.

Figure 8 - Hosts and switch
configuration

Host X Host Y

Host Z

Switch A

Switch B

A3

B1

B2

A1
A2

1 2

3

Physical port

Logical Address
23

Note: RFC (Request For Comment) documents are working standards documents from the TCP/IP
internetworking community. Copies of these documents are available from numerous electronic
sources (e.g., http://www.ietf.org) or by writing to IETF Secretariat, c/o Corporation for National
Research Initiatives, 1895 Preston White Drive, Suite 100 Reston, VA 20191-5434, USA.

A major advantage of using ULAs is that only the
switches need to know the fabric interconnection
topology and the hosts only need to know the
ULAs. Hence if a link or port fails, switches can
address around it without the hosts having to know
about it or do anything special.

A.3 Input specific logical addressing

Because each input port is specified to contain a
unique ULA look-up capability, it is possible to use
logical switch addressing for limited source routing.
Note that only the input portion of a port is involved
in addressing. When a Message exits on a particu-
lar output port, it crosses that link without further
addressing until received at the next input.

This capability means that it is possible to create
addressing that could result in infinite looping of a
micropacket. This will rarely be desirable and
should be avoided.

One possible use of input port specific routing is to
provide a test capability for monitoring the perfor-
mance of specific links. In figure 8, if Host Y wants
to monitor the state of the link between switch A
and switch B, he can send a Message to switch A
and then to switch B. Port B1’s ULA table (at switch
B) can direct the Message back to B1, then switch
A, and back to Host Y. To do this, the same ULA
must be handled differently by individual ports.

Table 10 shows a simplified look-up table that
would work in this example.

Because there are many available ULAs, normal
flat addressing can be used for host communica-
tions with other ULAs used to support input specific
logical routing for test and monitoring purposes.

Table 10 - Port look-up table

ULA Port Number Destination

2 A2 A3

2 B1 B1

2 A3 A2
24

Annex B Bridging
(informative)

Bridging

B.1 General

I believe that bridging with HIPPI-6400, as
described here is no longer possible (the desti-
nation ULA is changed). Is this true? Is there
something else that needs to go here?

HIPPI-6400 bridging may be used as a substitute
for directly manipulating MAC ULAs of connected
media types. Bridges use ULAs embedded in the
Message body as a look-up for the current media
address.

With bridging, the incoming ULA is only used to
send across a single fabric. At each media transla-
tion to and/or from HIPPI-6400, a new MAC
address is found based on the Message ULA
address.

For example, in figure 9, Host X uses a ULA of “4”
to communicate with the bridge system when

sending a Message to Host W (ULA “6” on a sepa-
rate network). The bridge operates on a ULA con-
tained in the Message body to look up the address
of Host W on the connected network. Host W
would reply using the bridge ULA (“5”) and the
bridge would look up the ULA of X (“1) to place in
the HIPPI-6400 MAC header

Building of look-up tables for bridging operations
can be done using an automated process such as
ARP or can be handled with static table entries.

Figure 9 - Hosts, switch, and
bridge configuration

Host X Host Y

Host Z

Switch A

Switch B

A3

B1

B2

A1
A2

1 2

3

Physical port

Logical Address

Bridge

A4

4

Host W

Different Media
(Not HIPPI-6400)

5

6

25

Annex C Bibliography
(informative)

Bibliography

The following documents are the basis for assign-
ment of specific logical addresses for certain net-
work services.

[1] RFC 1042, Standard for the transmission
of IP datagrams over IEEE 802 networks.
(Provides the general techniques that the
Internet Protocol uses to build media
packet headers on IEEE 802 (IS 8802) net-
works.)

[2] RFC 2067, IP on HIPPI. (Describes a tech-
nique whereby hosts may use the Internet
Protocol over a HIPPI compliant interface.)

[3] RFC 1112, Host extensions for IP multi-
casting. (Provides a technique whereby
network and transport layer Internet proto-
col applications may use the multicasting
capabilities defined for IS 8802 networks.)

 [4] RFC 1131, OSPF specification. (Describes
the open shortest path first IP protocol
which permits network layer IP routers to
discover the best route to remote IP
addresses and networks.)

[5] ISO/IEC 9542:1988, Telecommunications
and information exchange between sys-
tems – End system to intermediate system

routing exchange protocol for use in con-
junction with the protocol for providing the
connectionless-mode network service
(ISO 8473)

[6] ISO/IEC 10589:1992, Telecommunica-
tions and information exchange between
systems – Intermediate system to interme-
diate system intra-domain routing
exchange protocol for use in conjunction
with the protocol for providing the connec-
tionless-mode network service (ISO 8473)

[7] ISO/IEC 10038/ANSI/IEEE 802.1D-1990,
Media access control (MAC) bridges,
(Specifies the operation of transparent
bridges between IEEE 802 conferment
networks.)
26

	1 Scope
	2 Normative references
	3 Definitions and conventions
	3.1 Definitions
	3.2 Editorial conventions

	4 System overview
	4.1 Switch function
	4.2 Micropacket
	4.3 Message
	4.4 Admin micropackets
	4.5 Broadcast
	Figure 1 - Message format

	5 Switch routing
	5.1 Micropacket data transferred through fabric
	5.2 Routing of Header micropacket
	Figure 2 - Header micropacket addressing

	5.3 Routing of subsequent micropackets in a 5.3 Me...
	5.4 Error protection
	5.5 Data interleaving
	Figure 3 - HIPPI-6400 Switch

	6 ULA restrictions and reserved ULAs
	7 Admin micropackets
	Figure 4 - Potential HIPPI-6400 Elements
	7.1 Elements
	7.2 Admin micropacket functions
	7.3 Admin micropacket format
	Figure 5 - Admin Micropacket Byte Format
	Figure 6 - Admin micropacket Figure 6 - addressing...

	7.4 Admin micropacket functions
	7.5 Addressing of Admin micropackets
	7.6 Admin Element address assignment
	7.7 Admin micropacket flow control

	8 ULA Configuration
	8.1 Determination of Topology
	Figure 7 - Endpoint to endpoint connect

	8.2 ULA exchange

	9 Broadcast
	9.1 Broadcast Operation
	9.2 Registration for broadcast
	9.3 Spanning Tree Operation

	10 Broadcast Emulation
	10.1 Supported broadcast ULAs
	10.2 Selection of broadcast server
	10.3 Broadcast Server Configuration
	10.4 Sending Broadcast Messages

	Annex A Switching
	A.1 General
	Figure 8 - Hosts and switch Figure 8 - configurati...

	A.2 Logical addressing
	A.3 Input specific logical addressing

	Annex B Bridging
	B.1 General
	Figure 9 - Hosts, switch, and Figure 9 - bridge co...

	Annex C Bibliography

